
Dynamical symmetry and analytical solutions of the non-autonomous quantum master

equation of the dissipative two-level system: decoherence of the quantum register

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 829

(http://iopscience.iop.org/0305-4470/36/3/316)

Download details:

IP Address: 171.66.16.86

The article was downloaded on 02/06/2010 at 16:26

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 829–840 PII: S0305-4470(03)38074-6

Dynamical symmetry and analytical solutions of the
non-autonomous quantum master equation of the
dissipative two-level system: decoherence of
the quantum register

Shun-Jin Wang1,2, Jun-Hong An2, Hong-Gang Luo2 and Cheng-Long Jia2

1 Department of Physics of Sichuan University, Chengdu 610065, People’s Republic of China
2 Department of Modern Physics of Lanzhou University, Lanzhou 730000, People’s Republic
of China

Received 12 June 2002, in final form 11 November 2002
Published 7 January 2003
Online at stacks.iop.org/JPhysA/36/829

Abstract
Based on the non-autonomous quantum master equation, we investigate the
dissipative and decoherence properties of the two-level atom system interacting
with the environment of thermal quantum radiation fields. For this system, by
a novel algebraic dynamic method, the dynamical symmetry of the system
is found, the quantum master equation is converted into a Schrödinger-like
equation and the non-Hermitian rate (quantum Liouville) operator of the master
equation is expressed as a linear function of the dynamical u(2) generators.
Furthermore, the integrability of the non-autonomous master equation has been
proved for the first time. Based on the time-dependent analytical solutions, the
asymptotic behaviour of the solution has been examined and the approach to the
equilibrium state has been proved. Finally, we have studied the decoherence
property of the multiple two-level atom system coupled to the thermal radiation
fields, which are related to the quantum register.

PACS numbers: 03.65.Fd, 03.65.Yz, 42.50.Lc, 32.80.−t

1. Introduction

The behaviour of the quantum dissipative systems interacting with the background thermal
radiation field is one of the central subjects in quantum statistical physics. Extensive interests
in these systems arise from many fields of physics, for example, condensed matter physics
[1], quantum optics [2–4], quantum measurement [5, 6], quantum computation [7, 8], and so
on. The dissipation and decoherence are generated due to the interaction between the system
and the thermal bath or reservoir. After the enormous irrelevant degrees of freedom of the
thermal bath are integrated out from the von Neumann equation of the density matrix of the
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extended system including the environment, the master equation for the reduced density matrix
of the relevant system results in some reasonable approximations; for details see, for example,
[2, 3]. For a simple system, such as a two-level atom interacting with the background thermal
radiation field, as the parameters of the master equation are independent of time, the solutions
have been obtained and studied very well [2–4]. However, for the non-autonomous case where
the parameters of the master equation are dependent on time, Ellinas et al [9] have studied the
adiabatic evolution and the corresponding Berry phase in optical resonance, and the problem
for the general solutions still remains open. For more complicated systems, the solution to the
master equation of the reduced density matrix is, in general, difficult to obtain. To solve the
problem, the usual way is to convert the master equation to a set of differential equations for
some quantum statistical moments or expansion coefficients in terms of some bases truncated
at a reasonable order [2, 4]. In the meantime, some other useful approximate methods have
also been proposed, for instance, the short-time expansion [10], the small loss rate expansion
[11], the stochastic unravelling [12] and, finally, numerical calculations [13], etc. Some exact
methods have been also explored [14, 15]. An elegant method was proposed by Briegel and
Englert [16] to treat the quantum optical master equations by using the damping bases, but the
problem was restricted to the autonomous case where the parameters of the master equation
are independent of time.

In this paper, we present a novel algebraic dynamic method to solve the master equations,
which in many cases are found to have some dynamical algebraic structures. The common
feature of the quantum master equations is the existence of the sandwich terms of the Liouville
operators where the reduced density matrix of the system is in between some quantum
excitation and de-excitation operators, which come from the elimination of the environment
degrees of freedom. The sandwich structure of the quantum master equation also appears in
thermal field theory where the so-called thermal Lie algebra has been proposed to treat the
problem [17, 18], but the parameters of the master equation are still time-independent.

Our new algebraic method is just a generalization of the algebraic dynamical method
[19] from quantum mechanical systems to quantum statistical systems with time-dependent
parameters. It is designed to treat the sandwich problem and to explore the dynamical
algebraic structures of the master equations with time-dependent parameters built in. To this
end, the right and left representations [20] as well as the adjoint representations of dynamical
algebras are developed and used. This new method has been used successfully to solve the
von Neumann equation for the quantum statistical characteristic function of the two-level
Jaynes–Cummings model [21] and the master equation for the sympathetic cooling of the
Bose–Einstein condensate system in the mean field approximation [22]. In this paper, we
apply this method to solve the master equation of the dissipative two-level atom system
in the non-autonomous case, and to study the decoherence of the multiple two-level atom
system coupled to the radiation thermal bath; these have not been studied previously for the
non-autonomous case.

The paper is organized as follows. In section 2, the model Hamiltonian of the system
is given and the master equation for the reduced density matrix of the atom is described.
In section 3, the dynamical u(2) algebraic structure of the Liouville or rate operator of the
master equation is found by introducing the new composite algebras, which are constructed
from the right and left representations of the relevant algebras. Also, the dynamical symmetry
of the system is established and the integrability of the master equation is thus proved by
using the algebraic dynamical theorem [19]. Section 4 is devoted to the analytical solutions
of the master equation for the non-autonomous case where the parameters of the rate operator
(or Hamiltonian) are dependent on time, and the approach to the steady solution asymptotically
is thus proved. In section 5, the dissipation and decoherence of the multiple two-level atom
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systems are investigated for the non-autonomous case. Discussions and conclusions are given
in the final section.

2. Dissipative two-level atom system in the non-autonomous case

Consider the two-level atom interacting with a thermal quantum radiation field. With the
dipole interaction and in the rotating wave approximation, the total system is described by the
following model Hamiltonian,

Ĥ = 1
2 h̄ω0σz + Ĥ bath + h̄(σ+�̂ + σ−�̂†) (1)

where Ĥ bath = ∑
k h̄ωkb

+
k bk describing the background quantum radiation field, and

�̂ = ∑
k gkbk is an operator used to describe the coupling between the atom and the radiation

field with coupling constants gk . Here ω0 and ωk are the transition frequencies between two
levels of the atom and the mode frequencies of the radiation field, respectively. σ+, σ− and
σz are dimensionless atomic operators obeying the usual Pauli matrix commutation relations
[23]. Using the standard technique from quantum optics, we obtain the master equation for
the reduced density matrix of the atom [4]

dρ̂(t)

dt
= − i

2
ω0[σz, ρ̂(t)] − γ

2
(n̄0 + 1)(σ+σ−ρ̂(t) + ρ̂(t)σ+σ− − 2σ−ρ̂(t)σ+)

− γ

2
n̄0(σ−σ+ρ̂(t) + ρ̂(t)σ−σ+ − 2σ+ρ̂(t)σ−) (2)

where n̄0 is the mean number of photons in the environment and γ denotes the damping rate.
These read

n̄0 = [exp(h̄ω0/kBT ) − 1]−1

(3)
γ = 2π

∑
k

g2
k δ(ω0 − ωk).

Here the term which gives rise to a small Lamb frequency shift �ω has been neglected.
Equation (2) describes an atom interacting with a thermal field at the temperature T. If T = 0,
then n̄0 = 0.

In the autonomous case, the system has been studied very well. However, it is also
interesting to control the system through changing the temperature of the thermal bath, the
atomic energy level and the coupling constant. In this case, the parameters of the rate
operator γ, n̄0 and ω0 are time-dependent, and the system becomes non-autonomous. More
basically, even if the total Hamiltonian of the composite system—the system to be investigated
plus the environment—is autonomous, the master equation of the reduced density matrix of
the investigated system still becomes non-autonomous under the non-Markovian dynamics
[24]. Therefore, the quantum master equation of the reduced density matrix, in general and
more rigorously, should be non-autonomous in the sense that its parameters should be time-
dependent. To our knowledge, the problem of the non-autonomous systems has not been
solved up to now. Therefore, in the present paper it is our main goal to solve the problem
of the non-autonomous case for the two-level system. In the next section, we first study the
algebraic structure of the master equation (2) and explore its dynamical symmetry.



832 S-J Wang et al

3. Algebraic structure of the master equation

3.1. Right and left algebras in the von Neumann space

Following the idea of [22], the right and left algebras are introduced. First, we notice that the
density matrix ρ̂ is a super vector in the von Neumann space [20],

ρ̂ =
∑
s,s ′

ρss ′ |s〉〈s′| (4)

where |s〉 denotes the Fermion state. σ+, σ− and σz can operate on the ket state |s〉 to the right
and on the bra state 〈s| to the left, which form the right and left representations of the usual
su(2) algebra as follows [20]

su(2)R :
{
σ r

z , σ r
+ , σ r

−
}

su(2)L :
{
σ l

z, σ
l
+, σ

l
−
}
. (5)

They obey the commutation relations respectively as follows[
σ r

z , σ r
±
] = ±2σ r

±
[
σ r

+ , σ r
−
] = σ r

z
(6)[

σ l
z, σ

l
±
] = ∓2σ l

±
[
σ l

+, σ
l
−
] = −σ l

z .

It is evident that su(2)R is isomorphic to su(2), while su(2)L is anti-isomorphic to the su(2).
This is because su(2)R operates, as usual, towards the right on |s〉. On the other hand, su(2)L
operates towards the left on 〈s|. Since su(2)R and su(2)L operate on different spaces (the ket
and the bra spaces), they commute each other, i.e.

[su(2)L, su(2)R] = 0. (7)

3.2. Composite algebra and algebraic structure of the master equation

After having introduced the left and right algebras in equations (5), we can construct the
composite su(2) and u(1) algebras as follows

su(2) :

{
Ĵ 0 = σ r

z + σ l
z

2
, Ĵ + = σ r

+σ l
−, Ĵ − = σ r

−σ l
+

}
(8)

u(1) : Û 0 = σ r
z − σ l

z

2
.

According to equations (6) it is easy to check the following commutation relations

[Ĵ 0, J±] = ±2J± [Ĵ +, Ĵ −] = Ĵ 0
(9)

[Û 0, Ĵ ±] = 0 [U0, Ĵ 0] = 0.

The action of the composite su(2) and u(1) algebras on the bases of von Neumann space is

Ĵ 0|s〉〈s′ | = s + s ′

2
|s〉〈s′|

Ĵ +|s〉〈s′| = δs+1,0δs ′+1,0|s + 2〉〈s′ + 2|
(10)

Ĵ−|s〉〈s′| = δs−1,0δs ′−1,0|s − 2〉〈s ′ − 2|
Û 0|s〉〈s′| = s − s′

2
|s〉〈s′|

where s and s′ are equal to −1 or +1.
Noticing the following identities

σ+σ− = 1 + σz

2
σ−σ+ = 1 − σz

2
(11)
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and the composite algebra equations (8) introduced above, the master equation (2) can be
rewritten as

dρ̂(t)

dt
= 	̂(t)ρ̂(t) (12)

where the rate operator 	̂ reads

	̂ = −iω0(t)Û 0 + γ (t)n̄0(t)Ĵ + + γ (t)[n̄0(t) + 1]Ĵ− − 1
2γ (t)Ĵ 0 − 1

2γ (t)[2n̄0(t) + 1]. (13)

The master equation (12) is now put into a form similar to the time-dependent Schrödinger
equation except that the imaginary number ‘i’ is missing from the left-hand side and the rate
operator 	̂ is non-Hermitian, indicating the dissipative behaviour of the system due to the
energy exchange with the thermal bath. In equation (12), the rate operator 	̂ plays the role of
the Hamiltonian and the reduced density matrix plays the role of the wavefunction. Because
the rate operator 	̂ is a linear function of the su(2)⊕u(1) generators, the master equation (12)
possesses su(2) ⊕ u(1) dynamical symmetry; it is integrable and can be solved analytically
according to the algebraic dynamics [19].

4. Exact solution to the master equation in the non-autonomous case

4.1. Eigensolutions of the rate operators 	̂

In order to better understand the time-dependent solution of the master equation, its decay
behaviour and its approach to the equilibrium state, we first consider the steady eigenvalue
problem of the rate operator 	̂ whose eigensolution itself is interesting and peculiar, and
contains the steady equilibrium state. The eigen equation reads

	̂ρ(s, s ′) = β(s, s′)ρ(s, s ′) (14)

where β(s, s′) is the eigenvalue of the rate operator 	̂ and (s, s ′) label the eigenstates in the
von Neumann space. This eigenvalue equation is time-independent and can be solved by
introducing the following similarity transformation

ρ(s, s′) = Û ρ̄(s, s′) (15)

where

Û = eα+Ĵ + eα− Ĵ− Û−1 = e−α−Ĵ − e−α+ Ĵ + . (16)

Here α± are the parameters specifying the similarity transformation. After some calculations,
we have the transformed eigenvalue equation as follows

	̄ρ̄(s, s′) = β(s, s′)ρ̄(s, s′)
(17)

	̄ = Û−1	̂Û .

Here the transformed rate operator 	̄ is diagonalized and becomes a linear combination of
the commuting invariant operators Ĵ 0 and Û0, which dictate the dynamical symmetry of the
system

	̄ = −iω0Û0 − 1
2γ [2(n̄0 + 1)α+ + 1]Ĵ 0 − 1

2γ (2n̄0 + 1) (18)

if the following diagonalization conditions are fulfilled

−(n̄0 + 1)α2
+ − α+ + n̄0 = 0

(19)
(n̄0 + 1)(1 + 2α+α−) + α− = 0.



834 S-J Wang et al

The eigenvectors of 	̄ are the common solutions of Ĵ 0 and Û0, just the form of |s〉〈s′| with s
and s′ = ±1. Equations (19) have two sets of solutions, which yield two sets of eigenvalues
β(s, s ′) for the rate operator

(a) α+ = −1 α− = n̄0 + 1

2n̄0 + 1
β(s, s′) = −iω0

s − s ′

2
+

γ

2
(2n̄0 + 1)

(
s + s ′

2
− 1

)

(b) α+ = n̄0

n̄0 + 1
α− = − n̄0 + 1

2n̄0 + 1
β(s, s′) = −iω0

s − s ′

2
+

γ

2
(2n̄0 + 1)

(
− s + s′

2
− 1

)
.

(20)

At first glance, it is surprising that two similarity transformations exist to diagonalize the
same rate operator and to yield two sets of eigenvalues. This is in contrast to the diagonalization
of a Hamiltonian where the unitary transformation to diagonalize the Hamiltonian is usually
unique and the set of the eigensolutions is also unique. The peculiar results stem from the
special structure of the rate operator (13): (1) it contains a part (from the second to the fourth
terms) which is a vector in the linear space spanned by the su(2) generators (Ĵ +, Ĵ −, Ĵ 0), and
allows two transformations to rotate this part of vector along the Ĵ 0 and −Ĵ 0 directions; (2)
the last term of the rate operator is a constant term which is a scalar in the su(2) space and
makes the above two diagonalizing transformations asymmetric. The above two features result
in two similarity transformations [22]. However, as will be seen soon, after returning to the
physical frame by the inverse transformations, the two sets of eigensolutions coincide. This
means that the physical results are objective, independent of the similarity transformations
used.

It is interesting to note that both solutions (a) and (b) contain the zero-mode steady solution
and the nonzero-mode decaying solutions (with negative eigenvalues), which guarantee that
any time-dependent solution of the reduced density matrix asymptotically approaches the
steady solution, as shown below.

Performing an inverse transformation, the eigensolutions of the rate operator are obtained
readily

ρ(s, s ′) = Û ρ̄(s, s′) = (1 + α+J+)(1 + α−J−)|s〉〈s′|. (21)

Explicitly, both (a) and (b) solutions lead to the same physical eigensolutions

β1 = β(−1,−1) = 0 ρ1 = ρ(−1,−1) = n̄0 + 1

2n̄0 + 1
|−1〉〈−1|

+
n̄0

2n̄0 + 1
|+1〉〈+1|

β2 = β(+1, +1) = −γ (2n̄0 + 1) ρ2 = ρ(+1, +1) = |−1〉〈−1| − |+1〉〈+1|
(22)

β3 = β(+1,−1) = −γ

2
(2n̄0 + 1) − iω0 ρ3 = ρ(+1,−1) = |+1〉〈−1|

β4 = β(−1, +1) = −γ

2
(2n̄0 + 1) + iω0 ρ4 = ρ(−1, +1) = |−1〉〈+1|

where the first line of equations (22) is the zero-mode solution corresponding to the steady
state.

Another feature of the rate operator is its non-Hermiticity, i.e. 	̂† �= 	̂, which is evident
from Ĵ

†
+ = Ĵ −, Ĵ

†
− = Ĵ +, Ĵ

†
0 = Ĵ 0, and Û

†
0 = Û 0. Because 	̂ is non-Hermitian, the

eigenvectors of 	̂ and 	̂† constitute a bi-orthogonal basis [25].
Using a similarity transformation Û ′ = e−α+ Ĵ − e−α− Ĵ + and under the conditions of

equation (19), diagonalization of the operator 	̂† can be obtained as follows

	̄† = iω0Û 0 − 1
2γ [2(n̄0 + 1)α+ + 1]Ĵ 0 − 1

2γ (2n̄0 + 1). (23)
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In a similar way, we obtain the eigensolutions of 	̂†

β∗
1 = β∗(−1,−1) = 0 ρ̃1 = ρ̃(−1,−1) = |−1〉〈−1| + |+1〉〈+1|

β∗
2 = β∗(+1, +1) = −γ (2n̄0 + 1) ρ̃2 = ρ̃(+1, +1) = n̄0

2n̄0 + 1
|−1〉〈−1|

− n̄0 + 1

2n̄0 + 1
|+1〉〈+1| (24)

β∗
3 = β∗(+1,−1) = −γ

2
(2n̄0 + 1) + iω0 ρ̃3 = ρ̃(+1,−1) = |+1〉〈−1|

β∗
4 = β∗(−1, +1) = −γ

2
(2n̄0 + 1) − iω0 ρ̃4 = ρ̃(−1, +1) = |−1〉〈+1|

where β∗
j and ρ̃j are the eigenvalues and eigenvectors of the operator 	̂†. It can be checked

that equations (22) and (24) are bi-orthogonal.

4.2. Time-dependent solutions of the master equation in the non-autonomous case

Because equation (13) is a linear combination of the generators of the composite algebra, the
master equation (12) possesses su(2) ⊕ u(1) dynamical symmetry and is thus integrable, and
can be solved analytically even in the non-autonomous case [19].

The master equation in the non-autonomouscase can be solved by the algebraic dynamical
method via the following time-dependent gauge transformation, which is a generalization of
time-independent similarity transformations in the autonomous case to the non-autonomous
case (the terminology of gauge transformation is due to the fact that it induces a gauge term
in the rate operator similar to the gauge field theory):

Û g = eα+(t)Ĵ + eα−(t)Ĵ− . (25)

After the gauge transformation and under the following gauge conditions
dα+(t)

dt
= −γ (t)[n̄0(t) + 1]α2

+(t) − γ (t)α+(t) + γ (t)n̄0(t)

= − γ (t)[n̄0(t) + 1][α+(t) + 1]

[
α+(t) − n̄0(t)

n̄0(t) + 1

]
(26)

dα−(t)

dt
= γ (t)[n̄0(t) + 1][1 + 2α+(t)α−(t)] + γ (t)α−(t)

the gauged rate operator is diagonalized and the gauged master equation becomes simple and
integrable:
dρ̄(t)

dt
= 	̄(t)ρ̄(t)

	̄(t) = Û−1
g 	(t)Û g − Û−1

g

dÛ g

dt
(27)

= − iω0(t)Û 0 − 1
2γ (t){2[n̄0(t) + 1]α+(t) + 1]Ĵ 0 − 1

2γ (t)[2n̄0(t) + 1]}.
This is a linear function of the complete set of the commuting operators (invariant operators)
Û 0 and Ĵ 0, and clearly shows a u(2) dynamical symmetry. The solution of equations (27)
reads

ρ̄(t) = e
∫ t

0 	̄(τ ) dτ ρ̄(0). (28)

For the initial conditions α+(0) = α−(0) = 0 or ρ(0) = ρ̄(0) = ∑
ss ′ pss ′ |s〉〈s′|, we

finally obtain the solution

ρ(t) = eα+(t)Ĵ + eα−(t)Ĵ−e−iÛ 0
∫ t

0 ω0(τ ) dτ−Ĵ 0
∫ t

0 γ (τ)((n̄0(τ )+1)α+(τ )+ 1
2 ) dτ−∫ t

0
γ (τ)

2 (2n̄0(τ )+1)dτ ρ(0). (29)
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Once the reduced density matrix of the non-autonomous system is obtained, the averages
of the physical observables σz, σ+, and σ+ can be calculated. For the system initially in a
pure state, we have ρ(0) = |µ|2|1〉〈1| + |ν|2|−1〉〈−1| + µν∗|1〉〈−1| + µ∗ν|−1〉〈1|, where
|µ|2 + |ν|2 = 1. Then we obtain

ρ(t) = [f1,1(t)|µ|2(1 + α+(t)α−(t)) + f−1,−1(t)|ν|2α+(t)]|1〉〈1|
+ [f1,1(t)|µ|2α−(t) + f−1,−1(t)|ν|2]|−1〉〈−1|
+ f1,−1(t)µν∗|1〉〈−1| + f−1,1(t)µ

∗ν|−1〉〈1| (30)

where

fs,s ′(t) = e−i s−s′
2

∫ t

0 ω0(τ ) dτ− s+s′
2

∫ t

0 γ (τ){[n̄0(τ )+1]α+(τ )+ 1
2 } dτ− 1

2

∫ t

0 γ (τ)[2n̄0(τ )+1] dτ . (31)

From equation (30), we obtain

〈σz〉 = f1,1(t)|µ|2[1 + α+(t)α−(t) − α−(t)] + f−1,−1(t)|ν|2[α+(t) − 1]

〈σ+〉 = f−1,1(t)µ
∗ν (32)

〈σ−〉 = f1,−1(t)µν∗.

For the autonomous case, n̄0 and γ are independent of time, and α+ and α− have the
following analytical solutions

α+(t) = 1 − e−γ (2n̄0+1)t

n̄0+1
n̄0

+ e−γ (2n̄0+1)t
,

(33)

α−(t) =
(n̄0 + 1)n̄0

[
n̄0+1
n̄0

+ e−γ (2n̄0+1)t
][

1 − e−γ (2n̄0+1)t
]

(2n̄0 + 1)2 e−γ (2n̄0+1)t
.

Then

f1,1(t) = (2n̄0 + 1) e−γ (2n̄0+1)t

(n̄0 + 1) + n̄0 e−γ (2n̄0+1)t

f−1,−1(t) = (n̄0 + 1) + n̄0 e−γ (2n̄0+1)t

2n̄0 + 1
(34)

f1,−1(t) = e−iω0 t− γ

2 (2n̄0+1)t

f−1,1(t) = eiω0t− γ

2 (2n̄0+1)t .

Inserting equations (33) and (34) into equations (32), we recover the well-known results for
the autonomous system.

4.3. Approaching the steady solution

Like the autonomous case, the time-dependent solution of the master equation in the non-
autonomous case also asymptotically approaches the steady solution satisfying

dρ̂(t)

dt
= 	̂ρ̂(t) = 0 (35)

which has the same solution as the zero-mode eigensolutions of 	̂, namely the steady solutions
with the parameters α+ and α− obeying

dα+(t)

dt
= 0

(36)
dα−(t)

dt
= 0.
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These solutions are obviously the same as equations (19) and should have the two same
sets of solutions (a) and (b) as given in equations (20). For the autonomous case, the two
similarity transformations as tools to diagonalize the rate operator are on an equal footing
and generate the same physical solution as proved above; while for the non-autonomous
case, the properties of the two sets of solutions of α+ and α− should be examined with
respect to their time evolution. It is found from equation (26) that, if α+ = −1 − ε,
then dα+(t)

dt
< 0 and α+ will move further away from −1 towards the negative direction;

whereas α+ = −1 + ε, then dα+(t)

dt
> 0 and α+ will move further away from −1 towards

the positive direction. Thus, the steady solution α+ = −1 is unstable. Because the solution
of α−(t) depends on α+(t), it is also unstable. Therefore the solution (a) is unstable and
cannot be reached from the initial condition α+ = α− = 0. Instead, the solution (b) is
partly stable in the following sense. Because the first equation of equations (26) reads
dα+(t)

dt
= −γ (t)[n̄0(t) + 1][α+(t) + 1][α+(t) − n̄0(t)

n̄0(t)+1 ], it is easy to see that dα+(t)/dt > 0(< 0)

if 0 < α+(t) < n̄0(t)

n̄0(t)+1 (if α+(t) > n̄0(t)

n̄0(t)+1 and α+(t) < −1). With the initial condition α+ = 0,

we see that α+ approaches the value n̄0(∞)

n̄0(∞)+1 = n̄0
n̄0+1 asymptotically from zero. However,

α−(t) cannot reach its steady value − n̄0+1
2n̄0+1 . To study the asymptotic behaviour of α−, we

define y(t) = α−(t)× exp
{−∫ t

0 γ (τ)(n̄0(τ )+ 1)(α+(τ )+ 1) dτ
} = α−(t) exp

∫ t

0 p(τ) dτ . The
time differential of y(t) is given by b exp

∫ t

0 p(τ) dτ where b = α̇−(t) + α−(t)p(t). Because
b −→ γ (n̄0 + 1) is bounded and p(t) is negative for large t, the differential tends to zero and,
hence, y(t) is towards a constant. This implies that α−(t) diverges asymptotically. So the
unique solution of equation (26) has the following asymptotic properties:

α+(∞) = n̄0

n̄0 + 1
(37)

α−(t) × e− ∫ t

0 γ (τ)(n̄0(τ )+1)(α+(τ )+1)dτ |t→∞ = const.

Using the above asymptotic relations, we obtain the asymptotic results of the time-dependent
solutions as follows

ρ+−(t) |t→∞ = e−i
∫ t

0 ω0(τ ) dτ−∫ t

0 (γ (τ)(n̄0(τ )+ 1
2 ) dτ eα+(t)Ĵ + eα−(t)Ĵ− |+1〉〈−1|

= e−i
∫ t

0 ω0(τ ) dτ−∫ t

0 γ (τ)(n̄0(τ )+ 1
2 ) dτ |+1〉〈−1| −→ 0

ρ−+(t) |t→∞= e+i
∫ t

0 ω0(τ ) dτ−∫ t

0 γ (τ)(n̄0(τ )+ 1
2 ) dτ eα+(t)Ĵ + eα−(t)Ĵ−|−1〉〈+1|

= e+i
∫ t

0 ω0(τ ) dτ−∫ t

0 γ (τ)(n̄0(τ )+ 1
2 ) dτ |+1〉〈−1| −→ 0

ρ++(t) |t→∞ = e− ∫ t

0 γ (τ)(n̄0(τ )+1)(α+(τ )+1) dτ eα+(t)Ĵ + eα−(t)Ĵ− |+1〉〈+1|
= e− ∫ t

0 γ (τ)(n̄0(τ )+1)(α+(τ )+1) dτ [|+1〉〈+1| + α−(t)(|−1〉〈−1| + α+(t)|+1〉〈+1|)]
−→ const × (|−1〉〈−1| +

n̄0

n̄0 + 1
|+1〉〈+1|) = const × ρsteady

ρ−−(t) |t→∞ = e− ∫ t

0 γ (τ){−(n̄0(τ )+1))α+(τ )+n̄0(τ )} dτ eα+(t)Ĵ + eα−(t)Ĵ− |−1〉〈−1|
= e− ∫ t

0 γ (τ)[−(n̄0(τ )+1)α+(τ )+n̄0(τ )] dτ [|−1〉〈−1| + α+(t)|+1〉〈+1|] −→ c × ρsteady.

(38)

In the above derivation, we have used the following asymptotic relations

e− ∫ t

0 γ (τ)[−(n̄0(τ )+1)α+(τ )+n̄0(τ )] dτ |t→∞−→ 1 (39)

which can be proved by equation (26).
The above results indicate that the time-dependent solutions of the master equation in

the non-autonomous case also asymptotically approach the steady solution irrespective of
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their initial conditions, and that the divergent behaviour of α−(t) and equation (37) play an
important role in the process of approaching the equilibrium state.

5. Decoherence of multiple atom systems

It is straightforward to generalize the above model to N two-level atoms. The problem of
the N two-level atom system is related to the quantum register and the entanglement state in
quantum computation [26]. Because of the inevitable coupling of the atoms to the external
environment, the entanglement state will lose the coherence among different atomic states and
some information carried by the multiple atoms will be lost. Palma et al [27] have studied the
impact of decoherence on the efficiency of the Shor quantum algorithm and the decoherence
of the quantum register at the two-qubit level. However, the solution to the problem in the
non-autonomous case is still lacking. The N two-level atoms coupled to the quantum radiation
environment can be described by the following model Hamiltonian

Ĥ = Ĥ s + Ĥ env + Ĥ I

Ĥ s = 1

2

N∑
k=1

h̄�kσ
z
k (40)

Ĥ I =
N∑

k=1

∞∑
j=1

(
gkjb

†
jσ

−
k + h.c.

)
.

Taking the same procedure and the same approximations as those for the one atom case, the
master equation for the N two-level atoms can be obtained

ρ̇N =
N∑

k=1

	kρN = 	ρN

	 =
N∑

k=1

	k (41)

	k = −iω0Û
k
0 + γ n̄0Ĵ

k
+ + γ (n̄0 + 1)Ĵ k

− − γ

2
Ĵ k

0 − γ

2
(2n̄0 + 1).

Here we have assumed that the N two-level atoms are identical and coupled to the same
environment so that the decay rate γ for different atoms and the mean number of environment
photons n̄0 are the same (if they are different, a superscript k should be put on each pair of
parameters, namely γ k and n̄k

0). We have also set �1 = �2 = · · · = �N = ω0. The solution
to equations (41) reads

ρN(t) =
N∏

k=1

ρk(t). (42)

According to equation (29), the density matrix ρk(t) of the kth qubit is

ρk(t) = eαk
+(t)Ĵ k

+ eαk−(t)Ĵ k− e
∫ t

0 	̄k (τ ) dτ ρk(0) (43)

where 	̄k(t) = −iω0(t)Û
k
0 − 1

2γ (t)
{
2[n̄0(t) + 1]αk

+(t) + 1
}
Ĵ k

0 − 1
2γ (t)[2n̄0(t) + 1]. As in

the previous section, the initial density matrix ρk(0) of each qubit can be expanded in terms
of the superbases, ρk(0) = ∑

(s,s ′) ck
s,s ′ |s〉kk〈s′|. Here αk

+(t) and αk
−(t) obey equations (26),

because we have assumed that the parameters of the rate operators for different atoms are the
same functions of time. If γ k and n̄k

0 are different for different atoms, αk
+(t) and αk

−(t) are
also different for different atoms. However, they obey the same form of equations (26) but
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with different parameters γ k and n̄k
0. To illuminate the model concretely, we also consider the

two-qubit system with the initial state in the pure state, namely |ψ(0)〉 = α|+−〉 + β|−+〉 and

ρ2(0) = |α|2|+1〉11〈+1| ⊗ |−1〉22〈−1| + |β|2|−1〉11〈−1| ⊗ |+1〉22〈+1|
+ αβ∗|+1〉11〈−1| ⊗ |−1〉22〈+1| + α∗β|−1〉11〈+1| ⊗ | + 1〉22〈−1|. (44)

The time-dependent solution of the density matrix is now

ρ2(t) = |α|2f1,1(t)[(1 + α+(t)α−(t))|+1〉11〈+1| + α−(t)|−1〉11〈−1|]
⊗ f−1,−1 (t) [|−1〉22〈−1| + α+(t)|+1〉22〈+1|]
+ |β|2f−1,−1(t)[|−1〉11〈−1| + α+(t)|+1〉11〈+1|]
⊗ f1,1(t)[(1 + α+(t)α−(t))|+1〉22〈+1| + α−(t)|−1〉22〈−1|]
+ αβ∗f1,−1|+1〉11〈−1| ⊗ f−1,1|−1〉22〈+1|
+ α∗βf−1,1|−1〉11〈+1| ⊗ f1,−1|+1〉22〈−1| (45)

where fs,s ′(t) are the same as given in equations (31). For the autonomous case, γ (t), n̄0(t)

and ω0(t) are independent of time, and the solutions of α+(t) and α−(t) are determined from
equations (26), which are the same as equations (33). Equation (45) is now reduced to the
result for the autonomous case; it reads

ρ2(t) = e−γ (2n̄0+1)t

{
2
n̄0|α|2 − (n̄0 + 1)|β|2

2n̄0 + 1
ρ1

1 ⊗ ρ2
2

+ 2
n̄0|β|2 − (n̄0 + 1)|α|2

2n̄0 + 1
ρ1

2 ⊗ ρ2
1 + αβ∗ρ1

3 ⊗ ρ2
4 + α∗βρ1

4 ⊗ ρ2
3

}

− e−2γ (2n̄0+1)t4
n̄0(n̄0 + 1)

(2n̄0 + 1)2
ρ1

2 ⊗ ρ2
2 + ρ1

1 ⊗ ρ2
1 . (46)

The above solution indicates that, during the time evolution, the density matrix of the two-qubit
entanglement state will approach the steady density matrix (the last term in equation (46)) and
lose its coherence. The characteristic time of the decoherence is τdecoh = 1

γ (2n̄0+1)
.

6. Summary

In this paper, based on the quantum master equation, we have investigated the dissipative
and decoherence behaviours of the two-level atom system coupled to the environment of
thermal quantum radiation fields. The dynamical u(2) algebraic structure of the quantum
master equation of the two-level dissipative system in the non-autonomous case is found by
virtue of left and right algebras. Using the algebraic dynamical method and proper gauge
transformations, the analytical solutions to the non-autonomous master equation are obtained
and the long time behaviour of the system has been examined. Finally, we have extended the
model to the multiple two-level dissipative atom system and its decoherence has been studied
in terms of the density matrices for the non-autonomous case, which are given analytically
and related to the quantum register and quantum computation. Because the master equations
of a wide class of dissipative quantum systems possess some dynamical algebraic structures,
the present method that we use may serve as a useful tool in quantum statistical physics to
treat dissipative and decoherence problems. In addition, the results obtained in this paper may
be practically useful for the analysis of the decoherence of multiple two-level atom systems
and the quantum register.
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